Novel Anti-Tuberculosis Compounds

Novel *Mycobacterium tuberculosis* thioredoxin reductase inhibitors with antimycobacterial activity in infected macrophages

Invention
The resurgence of tuberculosis, caused primarily by *Mycobacterium tuberculosis* (*Mtb*), and the appearance of multi-drug and extensively drug resistant *Mtb* strains strengthen the need for new drugs with alternative modes of action. The interaction between the mycobacterial thioredoxin reductase (TrxR) and its substrate thioredoxin (Trx) is a promising new drug target for the treatment of tuberculosis, since *Mtb* lacks the common glutathione system and the mycobacterial TrxR shows a substantial difference in sequence, mechanism and structure to human TrxRs. It was shown that TrxR is essential for thiol redox homeostasis and genetic inactivation in vivo eradicates *Mtb* during acute and chronic mouse infections (Lin et al., PLoS Pathog. 2016).

In order to further improve the bioactivity of promising compounds, researchers of the TU Dortmund University have focused on optimizing the physico-chemical properties that are important for permeability, since *M. tuberculosis* shows an unusual thick and impermeable cell wall.

Competitive Advantages
- Novel class of compounds that inhibit a novel target with potential to overcome resistance problems of *M. tuberculosis* to other drugs
- Viability of infected macrophages is not affected
- Increased bioactivity by optimized permeability through the cell wall of *M. tuberculosis*

Commercial Opportunities
The technology is offered for licensing and further therapeutic development.

Compounds with improved physicochemical properties with regard to increased permeability and bioactivity were designed. The most promising compound (BE-068) was also tested on infected human macrophages and showed a clear dose-dependent activity on mycobacterial growth (upper graph), without affecting macrophage viability (lower graph).

Current Status
The researcher are preparing the further development towards mice studies to confirm in vivo efficacy, as well as ADME-Tox studies.
In case of interest we are pleased to inform you about the patent status.

Relevant Publications

An invention of the Technical University of Dortmund.

Contact:
Ref. No. 4941
Prof. Dr. Frank Entschladen

PROvendis GmbH
Schlossstraße 11-15
45468 Mülheim an der Ruhr
Germany

Tel.: +49 (0) 208 94 105 20
Fax: +49 (0) 208 94 105 50
E-Mail: fe@provendis.info
Web: www.provendis.info

PROvendis GmbH offers IP services for universities, research facilities and technology-oriented companies.
PROvendis recommends: www.inventionstore.de – free service to access the latest top technologies.